
Physics , General Relativity
Homework 

Due Wednesday, th November 

Jacob Lewis Bourjaily

Problem 11

We are asked to determine the ratio of frequencies observed at two fixed2 points in a spacetime with
a static metric gab; we should use this to determine the redshift of light emitted from the surface of the
Sun which is observed on the surface of the Earth.

Imagine a clock at a fixed point x1 which ticks with a regular interval ∆s. Because the
point is stationary, we may use the definition of the spacetime metric gab to see that
this interval is related to the coordinate time interval ∆t by3

∆s2 = ∆t21g00(x1). (1.1)

We have included a subscript on the coordinate time interval to make its position-
dependence manifest. The invariant interval ∆s, however, must certainly be position-
independent for any reliable clock. Therefore, we naturally have that

∆s2 = ∆t21g00(x1) = ∆t22g00(x2), (1.2)

for any other point x2. This implies that

∴ ∆t21
∆t22

=
g00(x2)
g00(x1)

. (1.3)

It is important to note that this discussion is not limited to clocks ticking regularly: any
process with a well-defined, constant time interval observed at two distinct points
will obey equation (1.3). Indeed, consider an atomic transition which emits photons
with frequency ν1 ≡ 1

∆t1
at point x1. Equation (1.3) implies that the frequency at

x1 will be related to the frequency ν2 at x2 by

∴ ν2

ν1
=

√
g00(x2)
g00(x1)

. (1.4)

‘óπερ ’έδει πoι�ησαι

To determine the redshift of light emitted from the Sun and observed on the Earth we
recall that in the Newtonian (weak-field) approximation,

g00(x) = −1− 2ϕN (x), (1.5)

where ϕN (x) is the Newtonian potential at x. The only subtlety is that we should
make sure to be careful about units when computing ϕN (x). Notice that because
the ‘1’ in −1− 2ϕN (x) is dimensionless, so should ϕN (x) be. This will be the case if
we judiciously set c = 1. In these units, we find

ϕN (R¯) = −2.12× 10−6 and ϕN (R⊕) = −1.06× 10−8, (1.6)

which gives a redshift of 2.11 parts per million.

1Note added in revision: this solution is bad. The argument presented for equation (1.4) is not valid (even though the
right answer emerges). One should be very careful about the thought experiment under consideration (because the inverse
result is easy to obtain under a different situation).

2The equation which the problem set asks us to demonstrate is only valid for stationary sources and observers—otherwise
there would be a doppler-shift term obfuscating the equation.

3In his textbook, Weinberg has an interesting discussion on why it is fundamentally not possible to disentangle ∆s from
∆t at a particular point. However, it is possible to compare the metric at two distinct points—by observing a gravitational
redshift—as described presently.
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Problem 2
We are to find the ‘natural’ generally covariant generalization of the flat-space Klein-Gordon La-

grangian (which was shown to be Weyl invariant in the last problem set). We should use this to
determine the matter stress-energy tensor and show that it is traceless.

The striking similarity between

gab∇a∇bϕ− 1
6
Rϕ = 0, (2.1)

and the massive Klein-Gordon equation makes us guess that the action from which
this is derived is

S =
1
2

∫
d4x

√−ggab

(
∇aϕ∇bϕ +

1
6
Rabϕ

2

)
. (2.2)

Our intuition is confirmed by calculating the equation of motion:

0 = ∇a

(
∂L

∂∇aϕ

)
− ∂L

∂ϕ
= ∇a

(
gab∇bϕ

)− 1
6
Rϕ,

= gab∇a∇bϕ− 1
6
Rϕ. (2.3)

Therefore the action (2.2) does indeed give rise to the desired equation of motion for
ϕ as desired.

We now must compute the stress-energy tensor for this matter Lagrangian. Recall that
the stress-energy tensor T ab of a system with action S is defined according to

δS =
1
2

∫
d4x

√−g T abδgab, (2.4)

from the variation gab 7→ gab + δgab. To compute the metric variation for the action
given in (2.2) we first recall some useful identities:

δgab = −gacgbdδgcd; δ(
√−g) =

1
2
√−ggabδgab; (2.5)

and gabδRab = ∇awa, where wa ≡ ∇b (δgab)− gcd∇a (δgcd) . (2.6)

This last identity, (2.6), follows from work done in lecture. Although brevity tempts
us to simply quote Wald’s textbook, it is sufficiently important to warrant a full
derivation. Therefore, to please the reader, a proof of this identity has been included
as an Appendix to this problem set.

We are now prepared to compute the metric variation of the action (2.2). As we proceed,
any total divergence will be assumed to integrate to zero.

δS =
1
2

∫
d4x

√−g

{
1
2
gabδgabg

cd

(
∇cϕ∇dϕ +

1
6
Rcdϕ

2

)
+ δgab

(
∇aϕ∇bϕ +

1
6
Rabϕ

2

)
+

1
6
gabδRabϕ

2

}
,

=
1
2

∫
d4x

√−g

[
δgab

{
1
2
gabgcd

(
∇cϕ∇dϕ +

1
6
Rcdϕ

2

)
−

(
∇aϕ∇bϕ +

1
6
Rabϕ2

)}
+

1
6
gcdδRcdϕ

2

]
,

=
1
2

∫
d4x

√−g

[
δgab

{
1
2
gabgcd

(
∇cϕ∇dϕ +

1
6
Rcdϕ

2

)
−

(
∇aϕ∇bϕ +

1
6
Rabϕ2

)}
+

1
6

(∇cwc)ϕ2

]
,

=
1
2

∫
d4x

√−g

[
δgab

{
1
2
gabgcd

(
∇cϕ∇dϕ +

1
6
Rcdϕ

2

)
−

(
∇aϕ∇bϕ +

1
6
Rabϕ2

)}
− 1

6
(∇cϕ2

)
wc

]
.

(2.7)

The last term in the expression above is qualitatively different from the first two. Let
us try to recast it into a form which makes the δgab-dependence manifest. Using the
definition of wc and making repeated use of integration by parts, we see∫

d4x
√−g ∇a(ϕ2)wa =

∫
d4x

√−g ∇a(ϕ2)
(
∇b (δgab)− gcd∇a (δgcd)

)
,

=
∫

d4x
√−g

(
∇b

(
δgab∇a(ϕ2)

)
− δgab∇b

(
∇a(ϕ2)

)
− gcd∇a

(
δgcd∇a(ϕ2)

)
+ gabδgab∇c

(
∇c(ϕ2)

))
,

=
∫

d4x
√−g δgab

(
gabgcd∇c∇dϕ

2 −∇a∇bϕ2
)
. (2.8)
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We are now ready to put everything together and find T ab. To make our result a bit
more transparent, let us agree to call gcd∇c∇d ≡ 2. Also, the identity gcd∇cϕ∇dϕ =
1
22ϕ2 − ϕ2ϕ will allow us to tidy up our expressions substantially. Combining all
of this, we can continue our work on the total variation (2.7) using the result from
(2.8) to find

δS =
1
2

∫
d4x

√−gδgab

{
1
2
gabgcd

(
∇cϕ∇dϕ +

1
6
Rcdϕ

2

)
−

(
∇aϕ∇bϕ +

1
6
Rabϕ2

)
− 1

6

(
gabgcd∇c∇dϕ

2 −∇a∇bϕ2
)}

,

=
1
2

∫
d4x

√−gδgab

{
1
2
gabgcd

(
∇cϕ∇dϕ− 1

3
∇c∇dϕ

2 +
1
6
Rcdϕ

2

)
−∇aϕ∇bϕ− 1

6
Rabϕ2 +

1
6
∇a∇bϕ2

}
,

=
1
2

∫
d4x

√−gδgab

{
1
2
gab

(
1
6
2ϕ2 +

1
6
Rϕ2 − ϕ2ϕ

)
− 1

3
∇a∇bϕ2 + ϕ∇a∇bϕ− 1

6
Rabϕ2

}
. (2.9)

This allows us to read-off

∴ T ab =
1
2
gab

(
1
6
2ϕ2 +

1
6
Rϕ2 − ϕ2ϕ

)
− 1

3
∇a∇bϕ2 + ϕ∇a∇bϕ− 1

6
Rabϕ2. (2.10)

‘óπερ ’έδει πoι�ησαι

As anyone who’s seen conformal field theory knows, the trace of the stress-energy tensor
must vanish. Let’s see how this ‘magically’ works out in the situation considered
presently.

gabT
ab =

1
3
2ϕ2 +

1
3
Rϕ2 − 2ϕ2ϕ− 1

3
2ϕ2 + ϕ2ϕ− 1

6
Rϕ2,

=
1
6
Rϕ2 − ϕ2ϕ,

= −ϕ

(
2ϕ− 1

6
Rϕ

)
,

= 0.

Notice that the last line required using the equations of motion—which wasn’t entirely
anticipated—at least by us.
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Problem 3: Killing Vectors

a. If ζa(x) is a Killing field and pa(λ) is the tangent vector to a geodesic curve γ(λ), then paζa(x)
is constant along γ.

proof: The derivative of paζa along γ is

pb∇b (paζa) = papb∇bζa + ζapb∇bp
a. (3.1)

The first term vanishes because papb is symmetric while ∇bζa is antisymmetric (be-
cause it is Killing). The second term vanishes because pa is the tangent of a ge-
odesic, which practically by definition implies that it obeys the geodesic equation,
pb∇bp

a = 0. ‘óπερ ’έδει δε�ιξαι

b. We are to list the ten independent Killing fields of Minkowski spacetime.

The ten independent Killing fields correspond to the ten generators of the Poincaré
algebra: four translations, three rotations, and three boosts. Given in terms of the
basis vectors ~ea, we the Killing vector fields are therefore

Translations : ~et, ~ex, ~ey, ~ez;

Rotations : y~ex − x~ey, z~ey − y~ez, x~ez − z~ex;

Boosts : x~et + t~ex, y~et + t~ey, z~et + t~ez;

Each of these ten vector fields manifestly satisfies Killing’s equation. That they are
linearly independent is also manifest4.

c. If ζa and ηa are Killing fields and α, β constants, then αζa + βηa is Killing.
proof: As should be obvious to all but the most casual observer,

∇b (αζa + βηz) = α∇bζa + β∇bηa = −α∇aζb − β∇aηb = −∇a (αζb + βηb) , (3.2)

because, being constants, α, β commute with the gradient and ζa, ηa are Killing.
Therefore equation (3.2) implies that (αζa + βηa) is Killing. ‘óπερ ’έδει δε�ιξαι

d. We are to show that Lorentz transformations of the Killing vector fields listed in part (b) above
give rise to linear recombinations of the same fields with constant coefficients.

Because every Lorentz transformation can be built from infinitesimal ones, it is sufficient
to demonstrate the claim for infinitesimal Lorentz transformations. And this makes
our work exceptionally easy. Infinitesimal Lorentz transformations are simply the
identity plus a constant multiple of the generators of the Lorentz algebra; but (the last
six of) the Killing fields listed in part (b) are nothing but these Lorentz generators.

Therefore, any infinitesimal Lorentz transformation of the Killing fields listed in part (b)
is a linear combination of those same Killing fields with constant coefficients. And
by extension, the same is true for any finite Lorentz transformation.

4Although we should add that we were not requested to demonstrate this—so our lack of exposition here should be
forgiven.
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Appendix

In problem 2 we made use of an identity that didn’t obviously follow from the work in lecture. We
remedy that deficiency presently5.

Lemma: Under the variation gab 7→ gab + δgab,

gabδRab = ∇awa, where wa ≡ ∇b (δgab)− gcd∇a (δgcd) . (A.1)

proof: We may begin with the related expression derived in lecture,

gabδRab = ∇a

(
gbcδΓa

bc − gacδΓb
cb

)
. (A.2)

Rearranging this we find

gabδRab = ∇a
{

gbcgadδΓd
bc − δΓd

ad

}
; (A.3)

therefore, it suffices to show that the term in brackets is equal to wa. Expanding this
expression and using symmetry to collect and cancel terms, we find

gbcgadδΓd
bc − δΓd

ad =
1
2
gbcgadδg

de
(
gbe,c + gce,b − gbc,e

)
+

1
2
gbcδe

a

(
δgbe,c + δgce,b − δgbc,e

)

− 1
2
δgbe

(
gae,b + gbe,a − gab,e

)
− 1

2
gbe

(
δgae,b + δgbe,a − δgab,e

)
,

=− 1
2
gbcgefδd

aδgde

(
gbf,c + gcf,b − gbc,f

)
+

1
2
gbc

(
δgba,c + δgca,b − δgbc,a

)
+

1
2
δgdeg

dcgefgcf,a − 1
2
gbeδgbe,a,

=− gbcgefδd
aδgdegbf,c − 1

2
gbcgefδd

aδgdegbc,f + gbcδgba,c − 1
2
gbcδgbc,a +

1
2
δgdeg

dcgefgcf,a − 1
2
gbcδgbc,a,

=gbcδgba,c − gbcδgbc,a − gbcgefgbf,cδgae − 1
2
gbcgefgbc,fδgae +

1
2
gdcgefgcf,aδgde.

Expanding the first two terms in the expression above in terms of covariant derivatives
and Christoffel symbols, we observe

gbcδgab,c = ∇b (δgab) + gbcδgebΓe
ac + gbcδgaeΓe

bc, (A.4)

and
gbcδgbc,a = gbc∇a (δgbc) + gbcδgbeΓe

ac + gbcδgecΓe
ba. (A.5)

Noting that the terms with the covariant derivatives are what we are looking for—
together, they give wa. Putting everything together,

gbcgadδΓd
bc − δΓd

ad = wa +
{

gbcδgaeΓe
bc − gbcδgecΓe

ba + gbcgef

(
1
2
gfc,aδgbe +

1
2
gbc,fδgae − gbf,cδgae

)}
.

(A.6)
All that remains is for us to show that the terms in curly brackets above vanish. To do

this, we will expand our expressions one last time—this time using the definition of
the Christoffel symbols for a metric connection. Doing so, we find

gbcgadδΓd
bc − δΓd

ad − wa = gbcgef

{
1
2
gfc,aδgbe +

1
2
gbc,fδgae − gbf,cδgae

− 1
2
gbf,aδgec − 1

2
gaf,bδgec +

1
2
gba,fδgec

+
1
2
gbf,cδgae +

1
2
gcf,bδgae − 1

2
gbc,fδgae

}
,

= 0.

Here we have indicated the terms that cancel together in matching colours. With
this, we have shown that

∴ gabδRab = ∇a
{

gbcgadδΓd
bc − δΓd

ad

}
= ∇a

{
∇b (δgab)− gcd∇a (δgcd)

}
= ∇awa. (A.7)

‘óπερ ’έδει δε�ιξαι

5We hope that there is an easier way to prove the following Lemma. But alas! too little time to be brief. Breviloquence
is a time-consuming luxury.


